Blog

Unearthing Opportunity in the Linear Approach Toward Clothing

Executive Summary

This analysis examines the interconnectivity between human behavior, industrial elements, and natural elements across the linear processes in the textile and clothing system. Using a systems-level perspective, it shows how biological and technical resources are wasted in material extraction and harvesting, the production of goods, and consumption or use by humans. The analysis of waste focuses on the material flows of non-energy related materials.  The impact to natural systems and energy-related materials is not emphasized.

System Introduction

The linear economy adopts an approach of take, make, use, dispose without considerations to comprised systems, each containing an interconnected set of elements organized around some purpose (De Vries, 2013). A broad understanding of system behavior explains the dependencies, influences, and potential consequences of each decision as it relates to the whole (Holling, 2001). Though the textile and clothing system is primarily concerned with the design, production and distribution of yarn, cloth and clothing, the intricacies and system dynamics specific to the fashion industry are far from basic (Amed, Berg, Brantberg, & Hedrich, 2016). The fashion industry fuels a linear economy with waste greater than $460B of value each year through unsustainable disposal of clothing (Ellen MacArthur Foundation, 2017). This analysis will explore the system described as textile to garment through depiction of linear process, flow of materials, and types of waste by each actor across the supply chain (Franco, 2017).

Human Perspective

With a population projected to reach 1.2B by 2025, consumerism has played an integral role in the evolution of industrialization, mass production, and values that marry progress and prosperity with compulsive acquisition (Goodwin, Nelson, Ackerman, & Weisskopf, 2008). Consumption signals a supply chain, and it responds through the acquisition of materials, manufacturing, and distribution of goods, creating inefficient use of natural resources, pollutants, and waste (Shah, 2014).

Abraham Maslow, renowned professor of psychology and human behavior, classifies all human efforts as an attempt to fulfill one of five needs. Humans require clothing to fill basic physiological and safety needs. However, the dynamics and influences that connect the linear economy and textile and clothing system are complex because economic performance is tied to human behavior, assessed by the growth and level of real output per person (McAlphin, 2014). Reciprocally, employment is a vital means to realize the income necessary for consumption, both individually and in aggregate terms (McAlphin, 2014). Over twenty-seven million people worldwide are employed in the textile and clothing industry (Amed, Berg, Brantberg, & Hedrich, 2016). Moreover, the system represents seven per cent of the world’s exports in terms of sales: a combined two thirds in North America and Western Europe, and one quarter in China (Cardoso, 2013).

Linear Process

The linear economy embodies a linear process because materials flow in one direction, with sub-optimal utilization of materials and energy, and a shortened life cycle (Varney-Wong, 2016). The textile and clothing system is a linear process as depicted in Figure 1, in which 53 metric tons of fibre are extracted annually to produce clothes that are often used for a short time, after which 73% of the materials are mostly sent to landfill or incinerated (Ellen MacArthur Foundation, 2017). Actors in the textile and clothing system supply chain include: supplier in the extraction and harvesting of raw materials, manufacturer in the production of goods, distribution and transportation as a conduit to the customer, and lastly the consumer who uses and disposes the goods, sustainably or unsustainably (De Vries, 2013). Although design and product commercialization are inputs to the linear process, it is not in the scope of this analysis.

In the United States, clothes are worn one quarter of the global average (Ellen MacArthur Foundation, 2017). The global average life cycle of a garment is two years (WRAP, 2017). The system is characterized by a complex supply chain and is considered to be one of the most polluting industries in the world, with more than 1.2B metric tons a year in greenhouse gas emitted during production alone which is greater than the emissions of end-to-end logistics (Ellen MacArthur Foundation, 2017).

 

Figure 1: Linear Process Model in Textile and Clothing System (Varney-Wong, 2016)

Biological and Technical Resources

The first actor, the supplier, is responsible for raw materials that are categorized as natural and manmade fibres as shown in Figure 2. Raw materials are inputs to processing and manufacturing using the biological resources sun, water, energy, and land to produce non-toxic materials that can biodegrade and safely feed environmental processes. Key biological resources are cotton and wool where yields are more than 26 mega tonnes and 2 mega tonnes respectively (Cardoso, 2013). Manmade or technical resources are not suitable for the biosphere and cover synthetic materials such as nylon, a polyester derived from petrochemicals, or regenerative cellulose materials that are manufactured from wood fibres (Cardoso, 2013). Technical resources include design, equipment and machinery, capital, data, and labor as inputs to create manmade fibers (Maia, Alves, & Leao, 2013). Blends are also used to give the fabric desirable qualities like breathability,

 

Figure 2: Raw Materials, Biological, and Technical Resources (Cardoso, 2013)

The volume of the world’s fiber production for the textile and clothing system in 2012 was approximately 88.5 mega tonne, from which 56 mega tonne were manmade, of which 40% was polyester, and 32.5 mega tonne natural fibre, of which 80% was cotton (Cardoso, 2013). The use of manmade fibre represents 64% of overall production, primarily by low cost clothing or fast fashion, and propensity to consume in developed countries (Cardoso, 2013). It is predicted that by 2030, the fashion industry will use 115 million hectares, a 35% increase in land for cotton, forest for cellulosic fibers, and grassland for livestock (Snoek, 2017).

The second actor comprises production and manufacturing, that includes processing to fibre raw materials, spinning, weaving, knitting, coloration, finishing (cutting, sewing, quality, pressing), packaging materials, and staging delivery to the consumer. This step uses technical resources of machinery, labor, capital, technology, and data with biological resources like water, energy, and land, yielding a thirty-six percent loss of material waste as a percent of total production as depicted in Figure 3 (Varney-Wong, 2016). Across the industry, only 13% of the total material input is in some way recycled after clothing use (Ellen MacArthur Foundation, 2017).

 

Figure 3: Material Waste as a Percent of Total Production (Varney-Wong, 2016)

The third actor, the consumer, is responsible for use and disposal. Use is defined as washing, drying, ironing, and utilizes biological resources of raw materials, water, and energy. The disposal of clothing has the largest impact on the natural environment via landfill or incineration (Rosa, 2016). While natural fibers like cotton and wool produce methane gas, polyester, the most common non-biodegradable synthetic fiber used in the clothing, can remain in landfill soil for several decades (Rosa, 2016).

Wastes

There are eight types of wastes common to Lean Six Sigma methodologies, a widely adopted best practice in efficient production of goods (Maia, Alves, & Leao, 2013). Across a linear process, T.I.M.W.O.O.D.U. characterizes wastes in transportation, inventory, motion, waiting, over production, over processing, defects and underutilizing knowledge management and people (iSixSigma, n.d.). Additional wastes include untapped human potential, poor design, inappropriate systems, and wasted natural resources (Maia, Alves, & Leao, 2013). All of these wastes are present in the linear process of the textile and clothing system.

The textile and clothing industry relies predominantly on 98 million tonnes per year in non-renewable resources; this includes oil in synthetic fibres production, fertilizers to grow cotton, and chemicals to produce, dye, and finish fibers and textiles (Ellen MacArthur Foundation, 2017). During the growing and extraction of raw materials, 93 billion cubic metres of water annually are consumed, contributing to water scarcity  (Ellen MacArthur Foundation, 2017). During the ‘take’ process step, other wastes include: transportation (energy in picking, extraction to production), inventory (use of land, pesticides, water, energy), motion (inefficient utilization of human labor), waiting (watering takt time, equipment, and human labor), over processing (excessive pesticides, preservatives), defects (waste water pollution, air emissions, poor demand forecast biased by mass-consumption, data quality, poor design), and underutilization (poor bio-design and poor use available technology to aid in harvesting and extraction) (Maia, Alves, & Leao, 2013) (Cardoso, 2013).

Textile and clothing manufacturing demands huge amounts of energy and water, particularly in wet processing. Wastewater must be properly treated from discharge to remove hazardous chemicals, including mutagens, carcinogens, and teratogens, that cause serious environmental damage including exhaust gases, waste water, and the fabrics (Franco, 2017). Also, synthetic fibers, mainly out of petrochemical base, lead to resource use and GHG emissions from processing fossil fuels (Cardoso, 2013). Poor labor standards and conditions pervade global textiles supply chains including ethical issues of child labor, poor safety infrastructure, forced labor, in addition to low wages and extended work days (Franco, 2017).

During the ‘make’ process step, other wastes include: transportation (energy moving products and information, distribution to consumer), inventory (use of land, chemicals, water, energy, fibre, parts, safety stock, working capital, packaging), waiting (between processes, and for human labor execution), over production (water, energy, noise pollution, dust emissions), over processing (water, energy, excessive chemicals, preservatives), defects (waste water pollution, air emissions, poor demand for energy and water, scrap, data quality), and underutilization (poor leadership making unsustainable decisions, unethical treatment of trading partners, poor bio-design, poor use available technology to aid in smart manufacturing) (Kupsala, 2013).

The consumer may send a waste-ridden demand signal that feeds the linear process during use and disposal. Underutilization of information pertaining to sustainable purchasing, sustainable disposal methods, and total costs of ownership in proper care for clothing, can lead to waste in water, energy, and use of chemicals in washing. Less than 1% of material used to produce clothing is recycled into new clothing, denoting a loss of more than $100B worth of materials each year (Ellen MacArthur Foundation, 2017). High costs are associated with disposal and land filling clothing and household textiles; in the UK the annual cost is approximately $108M (Ellen MacArthur Foundation, 2017). Other wastes include: transportation (energy moving products for early disposal and in landfill), inventory (use of land, water, energy, fibre, working capital tied to having too many garments), and defects (waste water pollution, air emissions, synthetic fibre impact in landfill)(Franco, 2017).

 

Conclusions

The large and growing global population has a predisposition to mass-consume with systems in place to inefficiently manufacture clothing, placing an extreme strain on materials, resources, and natural systems (Funkhouser, 2012). Emphasis is needed to highlight the extent that supply chains can contribute to global sustainability improvements and waste reduction in textile and clothing systems. As pressure for natural resources and price volatility intensifies, system focus must shift to recovery of materials and blends, water and energy usage, reducing hazardous chemical use, and ensuring ethical human rights (Franco, 2017). Ultimately, industry must leverage more efficient and sustainable practices through material lifecycle management, including shrinking or decreasing use, slowing, or closing material loops (Ellen MacArthur Foundation, 2015).

 

References

Amed, I., Berg, A., Brantberg, L., & Hedrich, S. (2016, December). The State of Fashion. Retrieved February 19, 2018, from McKinsey & Company: https://www.mckinsey.com/industries/retail/our-insights/the-state-of-fashion

Bove, A., & Swartz, S. (2016, November). Starting at the Source: Sustainability in Supply Chains. Retrieved February 15, 2018, from https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/starting-at-the-source-sustainability-in-supply-chains

Cardoso, A. (2013). Life Cycle Assessment of Two Textile Products: Wool and Cotton. Universidade Do Porto, Environmental Engineering.

Chan, T., & Wong, C. (2012). The Consumption Side of Sustainable Fashion Supply Chain: Understanding Fashion Consumer Eco‐fashion Consumption Decision. Journal of Fashion Marketing and Management, 16(12), 193-212.

De Vries, B. (2013). Sustainability Science. Cambridge: Cambridge University Press.

Ellen MacArthur Foundation. (2015, December 9). Towards a Circular Economy: Business Rationale for an Accelerated Transition. Retrieved February 13, 2018, from https://www.ellenmacarthurfoundation.org/assets/downloads/TCE_Ellen-MacArthur-Foundation_9-Dec-2015.pdf

Ellen MacArthur Foundation. (2017, January 12). Retrieved February 13, 2018, from https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

Franco, M. (2017). Circular Economy at the Micro Level: Dynamic View of Incumbents’ Struggles and Challenges in the Textile Industry. Journal of Cleaner Production, 168, 833-845.

Funkhouser, D. (2012, April). Population, Consumption, and the Future State of the Planet. Retrieved February 15, 2018, from http://blogs.ei.columbia.edu/2012/04/27/population-consumption-and-the-future/

Goodwin, N., Nelson, J., Ackerman, F., & Weisskopf, T. (2008, January). Consumption and the Consumer Society. Retrieved February 19, 2018, from http://www.ase.tufts.edu/gdae/education_materials/modules/Consumption_and_the_Consumer_Society.pdf

Gracey, F., & Moon, D. (2012, October 7). Valuing Our Clothes: The Evidence Base. Retrieved February 19, 2018, from http://www.wrap.org.uk/sites/files/wrap/10.7.12%20VOC-%20FINAL.pdf

Gutierrez, L. (2010, October). Retrieved February 19, 2018, from PelicanWeb Journal of Sustainable Development: http://www.pelicanweb.org/solisustv06n10page1supp3.html

Holling, C. (2001, August). Understanding the Complexity of Economic, Ecological, and Social Systems. EcoSystems, 4(5), 390-405. doi:10.1007/s10021-001-0101-5

iSixSigma. (n.d.). 8 Wastes of Lean. Retrieved February 20, 2018, from https://www.isixsigma.com/dictionary/8-wastes-of-lean/

Kupsala, H. (2013). Eco-Effective Fashion Theory: How to Implement Cradle-to-Cradle Concept Into Fashion and Clothing Design. University of Lapland.

Liu, J., Dietz, T., Carpenter, S., Alberti, M., Folke, C., & Moran, E. (2007, September 14). Complexity of Coupled Human and Natural Systems. doi:10.1126/science.1144004

Maia, L., Alves, A., & Leao, C. (2013). Sustainable Work Environment with Lean Production in Textile and Clothing Industry. International Journal of Industrial Engineering and Management , 4(3), 183-190.

Marino, A., & Pariso, P. (2016, May). From Linear Economy to Circular Economy: Research Agenda. International Journal of Research in Economics and Social Sciences , 6(5), 270-281.

McAlphin, D. (2014, September 10). U.S. Population and Its Impact on the Environment: Why Curbing Per Capita Consumption Is Not Enough. Retrieved February 15, 2018, from Progressives for Immigration Reform: http://progressivesforimmigrationreform.org/publication/u-s-population-and-its-impact-on-the-environment-why-curbing-per-capita-consumption-is-not-enough/

McAuley, I. (2007, February). Behavioural Economics and Public Policy: Some Insights. Retrieved February 9, 2018, from http://www.ianmcauley.com/academic/bepubpol.pdf

Rosa, A. (2016). Circular Economy in the Clothing Industry: Challenges and Strategies. KTH Industrial Engineering and Management.

Rydberg, A. (2016). Circular Economy Business Models in the Clothing Industry. Uppsala University, Department of Earth Sciences.

Sandvik, I. (2017). Applying Circular Economy to the Fashion Industry in Scandinavia Through Textile-to-Textile Recycling. Monash University, School of Social Science.

Shah, A. (2014, January). Consumption and Consumerism. Retrieved October 10, 2017, from http://www.globalissues.org/issue/235/consumption-and-consumerism

Shankar, A., & Pavitt, C. (2002, July). Resource and Public Goods Dilemmas: A New Issue for Communication Research. The Review of Communication, 251-272.

Snoek, S. (2017). Circular Economy in the Textile Industry. Sweden: Environmental Policy Group.

Strahle, J., & Muller, V. (2017, October 30). Key Aspects of Sustainability in Fashion Retail. Retrieved from Springer Link: https://link.springer.com/chapter/10.1007/978-981-10-2440-5_2

Varney-Wong, J. (2016). The Circular Economy. Retrieved February 16, 2018, Retrieved from http://ingienous.com/sectors/economy/a-new-economic-paradigm-of-prosperity-without-growth/circular-economy/

WRAP. (2017, July). Valuing Our Clothes:The Cost of UK Fashion. Retrieved February 19, 2018, from http://www.wrap.org.uk/sites/files/wrap/valuing-our-clothes-the-cost-of-uk-fashion_WRAP.pdf

Yawson, D., Armah, F., & Pappoe, A. (2009, November). Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries. Sustainability, 946-959.

 

Is Circular Progress in Fashion Moving Forward or Far Away?

Introduction

The fashion industry fuels a linear economy with waste greater than $460B of value each year through unsustainable disposal of clothing (Ellen MacArthur Foundation, 2017). Characterized as one of the most polluting and wasteful industries, it consumes 98 million tonnes in non-renewable resources, 93 billion cubic metres of water, and 53 metric tons of fibre to produce clothes used for a short time, after which 13% of the total material input is recycled and 73% of the materials are sent to a grave via landfill or incineration (Ellen MacArthur Foundation, 2017). One estimate suggests that as global population grows to 16% by 2030, the mass-consumption of clothing will grow 65% as 3 billion people move into the middle class (Rosa, 2016).

Reimagining the current take-make-dispose linear process, a circular economy (CE) model demonstrates an opportunity to prevent value leakage by decoupling economic activity from the consumption of finite resources, including shrinking or decreasing use, slowing, and closing material loops as depicted in Figure 1 (Ellen MacArthur Foundation, 2015). This analysis will explore circular approaches that collectively address system-level waste in the textile and clothing system, and the effectiveness of each approach in the acquisition of materials, production of goods, consumption, and disposal.

Read More

Cradle-to-Cradle System Design: reflections by Dr. Michael Braungart

 

Wanted to share insights from Dr. Michael Braungart on circular economy. My focus this Spring in post-graduate work is centered on application of circular economy theory in supply chain optimization.

The passage below is from ICR (2007) 7:152–156 – DOI 10.1007/s12146-007-0020-2 – © ICR 2007 Published online: 28 November 2007.

“Our current ‘eco-efficient’ view of sustainability sees materials flowing through the system in one direction only – from input to an output that is either consumed or disposed of in the form of waste. Eco-efficient techniques may be able to minimize the volume, velocity and toxicity of these material flows, but they cannot alter its linear progression ‘from cradle to grave’. While some materials are recycled, this recycling is difficult and brings added costs. The result of such recycling is actually downcycling: a downgrade in material quality which limits its future usability. We need an ‘eco-effective’ perspective to replace this limited and limiting agenda. In eco-effective industrial systems, the material intensity per service unit or ‘waste’ produced by each individual element is irrelevant as long as the materials entering the system are perpetually maintained as usable resources. For example, if the trimmings from the production of textile garments are composed in such a way that they become nutrients for ecological systems, then it doesn’t matter that they are not included in the saleable product. They are not ‘waste’. Even if the material intensity per service unit of the textile mill is astronomically high, it could still be highly eco-effective if its trimmings become productive resources for natural systems. The goal is not to minimize the cradle-to-grave flow of materials, but to generate cyclical cradle-to-cradle ‘metabolic cycles’ that enable materials to maintain their status as resources and accumulate intelligence over time.

Instead of downcycling this approach is all about upcycling. It doesn’t seek to eliminate waste or produce zero emissions. Instead it focuses on maintaining (or upgrading) resource quality and productivity through many cycles of use (and in doing so, it achieves ‘zero waste’ along the way). The difference between the two strategies of cradle-to-grave and cradle-to-cradle are very important. Strategies focused on achieving ‘zero waste’ do not create sustainable cradle-to-cradle cycles. But eco-efficient cradle-to-cradle cycles do achieve zero waste. How they achieve their goals is also different. ‘Zero waste’ cradle-to-grave strategies emphasize volume minimization, reduced consumption, design for repair and durability and design for recycling and reduced toxicity. On the other hand cradle-tocradle strategies design products and industrial processes so that every single one of their ‘outputs’ becomes a nutrient for another system – designed to be re-used – to create a perpetual cycle where resources are either maintained or ‘upcycled’.”

Personalized Customer Experiences Tied to Artificial Intelligence and Micro-Manufacturing

 

Thank you all for your engagement and support during #PanasonicCES! I was able to see and sample first-hand how Panasonic is transforming supply chains, connecting the customer to the manufacturer, delivering products faster and more accurately than ever before. The Twitter Poll results are in and you’ve asked for a deep-dive on the RFID Checkout Solution (45% of total votes). In this article, I’ll share how the solution is tied to a vision of personalization across the integrated supply chain and give a brief technical overview.

Panasonic’s Vision of the World in 2025

The future of retail must shift from simply selling items to providing personalized customer experiences that anticipate, learn, and respond where items in the real world and items from the memory of each person are connected. In order to deliver increased value for customers, the omni-channel experience will optimize how a customer places an order, how the product is manufactured and delivered, while providing complete end-to-end visibility throughout the process.

Technical Overview

The RFID Checkout Solution with Facial Recognition will optimize the customer’s in store experience, providing custom suggestions based on deep-learning, past purchases, easy and automated checkout, while facilitating delivery to the right place at just the right time, or providing grab-and-go functionality within seconds. As shown in my demonstration of the technology (click here to view), a key difference is how Panasonic is applying its best-in-class face authentication technology using deep-learning (age, gender, emotion), past purchases if applicable, and personalizing recommended products. Factors like facial direction, hidden areas (glasses, and hats), and even aging change information (yes it learns your age and will apply aging parameters) differentiate the face authentication technology. Settlement utilizes RFID technology based on the individual item information and facial recognition, remembering your payment preference. Several dozen items can be read at the same time and within seconds. Through process optimization, Panasonic takes a bottleneck in a retail setting and automates a slow-point, creating value for the customer and retailer. Cloud-based payment solutions can be customized based on the retailer’s preferences.

Personalized Customer Experiences Tied to Artificial Intelligence and Micro-Manufacturing

At CES, I was asked how Panasonic’s solution differs from other competitors? The answer is simple: Panasonic’s vision for customer purchasing in 2025 connects stores, factories, and logistics using AI, robotics, and RFID technology, transforming the way a product is ordered, made, shipped, and sold. By leveraging deep-learning, consumer preferences, point-of-sale data, and on-demand product personalization, Panasonic will use these insights as inputs to its’ manufacturing solutions that ensure full customization of a product, moving away from the practice of mass production. Embracing a make-to-order environment using micro-manufacturers and the Parallel Link Robot makes custom production easier and more cost effective, providing efficiency and value for the customer and  across the supply chain. For example, once previewed remotely, the customer can confirm the specifications of the product and the item receives an RFID tag, ensuring visibility through delivery. The result is increased customer satisfaction and retention while the costs of carrying inventory, reverse logistics, returns management, and poor quality are reduced for retailers. The solutions are creating a better life and a better world for all trading partners.

#PanasonicCES #CES2018 @PanasonicUSA

The Social Dilemma of Human Behavior & Sustainable Choices in the Fashion Supply Chain

Introduction

Although the premise of clothing characterizes a rudimentary need (Yawson, Armah, & Pappoe, 2009), the intricacies and system dynamics specific to the fashion industry’s supply chain are far from basic (Amed, Berg, Brantberg, & Hedrich, 2016). The current state of the fashion industry is challenging because factors contributing to its complexities are uncertain and constantly changing (Amed, Berg, Brantberg, & Hedrich, 2016). From the acquisition of raw materials, to manufacturing and distribution for purchase by the consumer, the fashion industry can influence sustainable practices across the global supply chain (Strahle & Muller, 2017).

Sustainability involves changing environmental dynamics that affect dimensions of ecology, economy, socio-politics, and human behavior (Joy, Sherry, Venkatesh, Wang, & Chan, 2012). Research shows an inherent dissension among some fashion consumers (McNeill & Moore, 2015), who “often share a concern for environmental issues even as they indulge in consumer patterns antithetical to ecological best practices” (Joy, Sherry, Venkatesh, Wang, & Chan, 2012). An emerging concept in industry is fast fashion, which refers to “low-cost clothing collections that mimic current luxury fashion trends and helps sate deeply held desires among young consumers in the industrialized world for luxury fashion, even as it embodies unsustainability” (Joy, Sherry, Venkatesh, Wang, & Chan, 2012).

Globalization and competition create increased financial and operational pressures in industry to reduce costs (Christopher, Lowson, & Peck, 2004). When paired with growth in human population (Strahle & Muller, 2017), scarcity of natural resources (De Vries, 2013), growth in industry (Amed, Berg, Brantberg, & Hedrich, 2016), advances in technology, consumer trends (Education Bureau, 2017), and human behavior in social dilemmas, the participants in a fashion supply chain may partake in unsustainable business practices (Chan & Wong, 2012). At the intersection of globalization, market competition, fast fashion (Joy, Sherry, Venkatesh, Wang, & Chan, 2012) and sustainability is the social dilemma of fashionable versus durable clothing. This analysis will explore the social dilemma of human behavior and sustainable choices in the fashion supply chain using the context of a pay-off matrix (De Vries, 2013).

Read More

Social Dilemma Assessment

A social dilemma is where interdependent participants face a conflict between the maximizing personal gain and/or a collective interest (Dawes, 1980). As noted by Dr. Robyn Dawes (1980), leading psychologist and researcher, “public goods dilemmas occur when individuals can choose whether to contribute to a common pool that benefits both contributors and non-contributors alike, as long as enough choose to contribute”. Resource dilemmas are slightly different because individuals can decide how much to withdraw for personal use from a common pool that will only be maintained if withdrawals are kept to a minimum (Dawes, 1980). Public goods and resource dilemmas encompass “many of the most critical problems facing humanity, most notably those regarding resource shortages caused by overuse and failures to contribute to the common good” (Shankar & Pavitt, 2002). Moreover, research demonstrates that communication between participants has a significant effect on cooperation rates in these two types of social dilemmas (Shankar & Pavitt, 2002).

Overview of the Pay-Off Matrix

The pay-off matrix offers a way to analyze human behavior in situations of interdependence and conflict (Yawson, Armah, & Pappoe, 2009). As depicted in Figure 1, interdependent positions can range from virtuously cooperative, wherein a gain for one is a gain for the others, to a win-lose competitive position (Dawes, 1980). A decision to maximize individual gain is known as a defecting choice (Dawes, 1980), depicted as “you are the free rider” in Figure 1 (De Vries, 2013). Conversely, a win-win decision (De Vries, 2013) to maximize the gain of the collective is known as a cooperative choice (Dawes, 1980). Furthermore, “at any given decision point individuals receive higher payoffs for making selfish choices than they do making cooperative choices regardless of the choices made by those with whom they interact” (Weber, Kopelman, & Messick, 2004). The cost of the dilemma is that everyone involved receives a lower payoff by making a selfish choice (Dawes, 1980).

 

Figure 1: Pay-Off Matrix in a Social Dilemma (De Vries, 2013)

Pay-Off Matrix Participants in a Fashion Supply Chain

While enduring substantial growth over the past two decades (Strahle & Muller, 2017), the fashion industry has drastically evolved due to retail consolidation, globalization and e-commerce (Amed, Berg, Brantberg, & Hedrich, 2016). It is considered to be one of the most polluting industries in the world (Strahle & Muller, 2017). Industry and trading partners often request for participants to act sustainably (Strahle & Muller, 2017). Participants in a fashion supply chain include suppliers, manufacturers, distributors, retailers, and consumers (Strahle & Muller, 2017).

Theory and Influence in Consumer Fashion Decisions

Martin Christopher, thought leader in supply chain theory and best practice, defines fashion markets as typically exhibiting the following characteristics: short life cycles, high volatility, low predictability and high impulse purchasing (Christopher, Lowson, & Peck, 2004). A key concept in understanding the impulses of consumer purchasing is Maslow’s theory of human motivation (Chan & Wong, 2012). The theory classifies all human efforts as an attempt to fulfill one of five needs (Yawson, Armah, & Pappoe, 2009, p. 951). Figure 2 shows the hierarchical order in which these needs are connected, specifically in decisions that involve buying clothes.

Figure 2: Adaption of Maslow’s Motivational Theory in Fashion-Based Decisions (Yawson, Armah, & Pappoe, 2009, pp. 952-953)

Consumer decisions to purchase fashionable or durable clothing are also influenced by body type, age, family, lifestyle, peers, society, and consumer socialization (Yang, Song, & Song, 2017), or amount of disposable income that allows for considerations of quality and durability (Education Bureau, 2017). Other influences include values from one’s culture, environment, and value orientation (Education Bureau, 2017, p. 16). Lastly, frequency of wear and care instruction (McNeill & Moore, 2015) may influence the need for fashionable, inexpensive, and of lesser quality clothing versus durable clothing (Education Bureau, 2017, pp. 47-51).

Perspectives in the Pay-Off Matrix

Using the interdependent participants in a fashion supply chain, the over-arching perspectives and the decision to cooperate or defect in sustainable practices are shown below in Figure 3.

Figure 3: Pay-Off Matrix in a Fashion Supply Chain (De Vries, 2013)

Cooperate, Cooperate: A Win-Win Solution

When all participants cooperate, all are aligned in sustainable practices (Yang, Song, & Song, 2017). Because all parties benefit from this scenario, resolutions to the conflict are likely to be accepted voluntarily (Joy, Sherry, Venkatesh, Wang, & Chan, 2012). In this scenario, the supplier uses ethical growing conditions, labor practices, and pricing mechanisms that are passed onto the manufacturer (McNeill & Moore, 2015). The product is manufactured with considerations in sustainable design, efficient use of water and energy in textile process, chemical-free treatments, and lean waste reduction (Shankar & Pavitt, 2002). Distributors and retailers respect considerations of packaging waste, energy use in transportation and logistics (Christopher, Lowson, & Peck, 2004) and the ethical treatment of trading partners. Most importantly, the consumer uses sustainable participation across the supply chain to guide purchasing decisions. After purchase, the consumer limits the use of chemical detergents, water and energy use in care, early disposal and landfill waste, and shares the experience with others in his or her circle of influence (Yang, Song, & Song, 2017). The costs of quality and sustainable considerations are shared and accepted by each participant (Jung & Jin, 2014).

Cooperate, Defect

In this scenario, the consumer adheres to sustainable practices while the supplier, manufacturer, distributor, and retailer defect. The consumer receives a small positive individual outcome that is immediate and a large negative collective outcome (the depletion of future resources) is delayed (Shankar & Pavitt, 2002). The defectors receive a higher payoff in the short run no matter what decisions all other individuals make (Dawes, 1980). The result is that the consumers suffers or loses (Dawes, 1980). The defecting choice is known as the “dominant strategy” (Dawes, 1980). Because the dominant strategy produces less preferred outcomes, it is known to be a deficient outcome (Dawes, 1980). The costs of sustainable considerations are born by the consumer and common resource pools (Jung & Jin, 2014).

Defect, Cooperate

In this scenario, the consumer defects and is “a free-rider” (De Vries, 2013), while the supplier, manufacturer, distributor, and retailer adhere to sustainable practices. The consumer pursues individual short-term interest regardless of the impact to common resource pools in the long run (Chan & Wong, 2012). Common pool resources are available to all participants such as air, water, energy, and are increasingly in short supply (Shankar & Pavitt, 2002). When the consumer defects, resources are still available without any personal cost borne. The collective actively participates in aforesaid sustainable practices across the supply chain.

Defect, Defect: The Commons Tragedy

In this scenario called the commons tragedy (De Vries, 2013), all participants in the supply chain defect causing unsustainable outcomes in decision making as depicted in Figure 4. The concept echoes that “open-access common resource pools are exploited until the very last unit as long as someone else pays for it” (De Vries, 2013, p. 390). In a widely cited paper entitled The Tragedy of Commons (1968), the biologist Hardin suggested there is an inherent tendency amongst humans to overexploit such a shared, common, or collective resource” (De Vries, 2013, p. 390). Research related to the commons tragedy “emphasizes the role of factors that may predispose people to take risks in social dilemmas” including aforementioned theory and influence in consumer fashion decisions (Weber, Kopelman, & Messick, 2004). As Figure 4 suggests, participants may differ systematically in the way each arrives at the same decision to defect.

 

Figure 4: Unsustainable Outcomes of Decisions Made by Participants in the Fashion Supply Chain (Strahle & Muller, 2017)

Conclusion

Sustainability and ethical conduct has gained increasing importance in the fashion industry (Joy, Sherry, Venkatesh, Wang, & Chan, 2012). Many fashion companies are focusing on tactical efficiencies, implementing changes to their core operations “from shortening the length of the fashion cycle to integrating sustainable inno­vation into their core product design and manu­facturing processes (Amed, Berg, Brantberg, & Hedrich, 2016). However, although companies realize that trendy, affordable fashion raises sustainable concerns, the pressure to meet consumers demands is still influencing industry behavior (Amed, Berg, Brantberg, & Hedrich, 2016).  As demonstrated in this analysis, sustainable decisions in the textile and fashion industry can be controlled along the supply chain (Strahle & Muller, 2017). Specifically, “retailers are the link between the supplier and the consumers. They could be the ecological gatekeepers and help the relevant partners along the supply chains incorporate sustainability into the business” (Yang, Song, & Song, 2017). While the fashion supply chain and consumers continue to evolve in the progression of whether to make and/or consume fashionable or green products, the challenge to connect and meet “deeper elements of value, such as high ethical standards in sourcing, efficient use of materials, low-impact manufacturing, assembly, and distribution,” (Joy, Sherry, Venkatesh, Wang, & Chan, 2012) will remain challenging for decades to come.

References

Amed, I., Berg, A., Brantberg, L., & Hedrich, S. (2016, December). The State of Fashion. Retrieved October 29, 2017, from McKinsey & Company: https://www.mckinsey.com/industries/retail/our-insights/the-state-of-fashion

Chan, T., & Wong, C. (2012). The Consumption Side of Sustainable Fashion Supply Chain: Understanding Fashion Consumer Eco‐fashion Consumption Decision. Journal of Fashion Marketing and Management: An International Journal, 16(2), 193-212. doi:10.1108/13612021211222824

Christopher, M., Lowson, R., & Peck, H. (2004). Creating Agile Supply Chains in the Fashion Industry. International Journal of Retail Distribution Management, 32(8), 367-376. doi:10.1108/09590550410546188

Dawes, R. M. (1980). Social Dilemmas. Annual Review of Psychology, 31, 169-193.

De Vries, B. (2013). Sustainability Science. Cambridge: Cambridge University Press.

Education Bureau. (2017, November 13). Consumer Behavior in Clothing Choices and Implications. Retrieved from www.hkedcity.net/res_data/edbltr-te/1-1000/…/2_Consumer_eng_Oct_2011.pdf

Joy, A., Sherry, J., Venkatesh, A., Wang, J., & Chan, R. (2012). Fast Fashion, Sustainability, and the Ethical Appeal of Luxury Brands. Fashion Theory, 16(3), 273-296. doi:10.2752/175174112X13340749707123

Jung, S., & Jin, B. (2014). A Theoretical Investigation of Slow Fashion: Sustainable Future of the Apparel Industry. (D. E. Kempen, Ed.) International Journal of Consumer Studies, 38(5), 510-519. doi:10.1111/ijcs.12127

McNeill, L., & Moore, R. (2015, May). Sustainable Fashion Consumption and the Fast Fashion Conundrum: Fashionable Consumers and Attitudes to Sustainability in Clothing Choice. International Journal of Consumer Studies, 39(3), 212-222. doi:10.1111/ijcs.12169

Shankar, A., & Pavitt, C. (2002, July). Resource and Public Goods Dilemmas: A New Issue for Communication Research. The Review of Communication, 251-272.

Social Dilemma. (n.d.). Retrieved November 7, 2017, from Wikipedia: https://en.wikipedia.org/wiki/Social_dilemma

Strahle, J., & Muller, V. (2017, October 30). Key Aspects of Sustainability in Fashion Retail. Retrieved from Springer Link: https://link.springer.com/chapter/10.1007/978-981-10-2440-5_2

Sustainable Apparel Coalition. (2017, November 7). The Higg Index. Retrieved from Sustainable Apparel Coalition: https://apparelcoalition.org/the-higg-index/

Weber, J. M., Kopelman, S., & Messick, D. M. (2004). A Conceptual Review of Decision Making in Social Dilemmas: Applying a Logic of Appropriateness. 8(3), pp. 281-307.

Yang, S., Song, Y., & Song, S. (2017). Sustainable Retailing in the Fashion Industry: A Systematic Literature Review. Sustainability, 9(7), 1266. doi:10.3390/su9071266

Yawson, D., Armah, F., & Pappoe, A. (2009, November). Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries. Sustainability, 946-959.

Why Business Can Bridge the Gap to Solve Social Problems

Why do we turn to nonprofits, NGOs and governments to solve society’s biggest problems? Michael Porter admits he’s biased, as a business school professor, but he wants you to hear his case for letting business try to solve massive problems like climate change and access to water. Why? Because when business solves a problem, it makes a profit — which lets that solution grow.

Moving Towards a Circular Economy

When you think about accelerating impacts and long-term solutions to current supply chain challenges that impact the 3P’s (people, planet and profit), we need to adopt and develop sustainable frameworks with a holistic life-cycle perspective. There is a ton of innovation happening in the CPG space (Levi’s, Unilever, PepsiCo, etc.)

Shifting from the current ‘take-make-waste’ linear model to the circular economy is critical for businesses to continue to thrive and meet society’s needs. Waste volumes are projected to increase from 1.3 to 2.2 billion tons by 2025, and with nearly 9 billion consumers on the planet including 3 billion new middle class consumers by 2030. The challenges of addressing waste and meeting increasing demand are unprecedented. Therefore it is imperative businesses continue to re-evaluate raw materials, design, manufacturing, consumption, and end of life to keep materials and products continuously flowing through closed loop systems.

How is your company innovating in product life cycle management from design and inception to sustainable product packaging? How are you personally adopting a sustainable mindset in your home, the daily choices you make as a consumer to move toward a circular economy? The bigger question is how are YOU INFLUENCING this change?

The Surprising Habits of Original Thinkers

How do creative people come up with great ideas? Organizational psychologist Adam Grant studies “originals”: thinkers who dream up new ideas and take action to put them into the world. In this talk, learn three unexpected habits of originals — including embracing failure. “The greatest originals are the ones who fail the most, because they’re the ones who try the most,” Grant says. “You need a lot of bad ideas in order to get a few good ones.”