Posts tagged lineareconomy

Unearthing Opportunity in the Linear Approach Toward Clothing

Executive Summary

This analysis examines the interconnectivity between human behavior, industrial elements, and natural elements across the linear processes in the textile and clothing system. Using a systems-level perspective, it shows how biological and technical resources are wasted in material extraction and harvesting, the production of goods, and consumption or use by humans. The analysis of waste focuses on the material flows of non-energy related materials.  The impact to natural systems and energy-related materials is not emphasized.

System Introduction

The linear economy adopts an approach of take, make, use, dispose without considerations to comprised systems, each containing an interconnected set of elements organized around some purpose (De Vries, 2013). A broad understanding of system behavior explains the dependencies, influences, and potential consequences of each decision as it relates to the whole (Holling, 2001). Though the textile and clothing system is primarily concerned with the design, production and distribution of yarn, cloth and clothing, the intricacies and system dynamics specific to the fashion industry are far from basic (Amed, Berg, Brantberg, & Hedrich, 2016). The fashion industry fuels a linear economy with waste greater than $460B of value each year through unsustainable disposal of clothing (Ellen MacArthur Foundation, 2017). This analysis will explore the system described as textile to garment through depiction of linear process, flow of materials, and types of waste by each actor across the supply chain (Franco, 2017).

Read More

Human Perspective

With a population projected to reach 1.2B by 2025, consumerism has played an integral role in the evolution of industrialization, mass production, and values that marry progress and prosperity with compulsive acquisition (Goodwin, Nelson, Ackerman, & Weisskopf, 2008). Consumption signals a supply chain, and it responds through the acquisition of materials, manufacturing, and distribution of goods, creating inefficient use of natural resources, pollutants, and waste (Shah, 2014).

Abraham Maslow, renowned professor of psychology and human behavior, classifies all human efforts as an attempt to fulfill one of five needs. Humans require clothing to fill basic physiological and safety needs. However, the dynamics and influences that connect the linear economy and textile and clothing system are complex because economic performance is tied to human behavior, assessed by the growth and level of real output per person (McAlphin, 2014). Reciprocally, employment is a vital means to realize the income necessary for consumption, both individually and in aggregate terms (McAlphin, 2014). Over twenty-seven million people worldwide are employed in the textile and clothing industry (Amed, Berg, Brantberg, & Hedrich, 2016). Moreover, the system represents seven per cent of the world’s exports in terms of sales: a combined two thirds in North America and Western Europe, and one quarter in China (Cardoso, 2013).

Linear Process

The linear economy embodies a linear process because materials flow in one direction, with sub-optimal utilization of materials and energy, and a shortened life cycle (Varney-Wong, 2016). The textile and clothing system is a linear process as depicted in Figure 1, in which 53 metric tons of fibre are extracted annually to produce clothes that are often used for a short time, after which 73% of the materials are mostly sent to landfill or incinerated (Ellen MacArthur Foundation, 2017). Actors in the textile and clothing system supply chain include: supplier in the extraction and harvesting of raw materials, manufacturer in the production of goods, distribution and transportation as a conduit to the customer, and lastly the consumer who uses and disposes the goods, sustainably or unsustainably (De Vries, 2013). Although design and product commercialization are inputs to the linear process, it is not in the scope of this analysis.

In the United States, clothes are worn one quarter of the global average (Ellen MacArthur Foundation, 2017). The global average life cycle of a garment is two years (WRAP, 2017). The system is characterized by a complex supply chain and is considered to be one of the most polluting industries in the world, with more than 1.2B metric tons a year in greenhouse gas emitted during production alone which is greater than the emissions of end-to-end logistics (Ellen MacArthur Foundation, 2017).

 

Figure 1: Linear Process Model in Textile and Clothing System (Varney-Wong, 2016)

Biological and Technical Resources

The first actor, the supplier, is responsible for raw materials that are categorized as natural and manmade fibres as shown in Figure 2. Raw materials are inputs to processing and manufacturing using the biological resources sun, water, energy, and land to produce non-toxic materials that can biodegrade and safely feed environmental processes. Key biological resources are cotton and wool where yields are more than 26 mega tonnes and 2 mega tonnes respectively (Cardoso, 2013). Manmade or technical resources are not suitable for the biosphere and cover synthetic materials such as nylon, a polyester derived from petrochemicals, or regenerative cellulose materials that are manufactured from wood fibres (Cardoso, 2013). Technical resources include design, equipment and machinery, capital, data, and labor as inputs to create manmade fibers (Maia, Alves, & Leao, 2013). Blends are also used to give the fabric desirable qualities like breathability,

 

Figure 2: Raw Materials, Biological, and Technical Resources (Cardoso, 2013)

The volume of the world’s fiber production for the textile and clothing system in 2012 was approximately 88.5 mega tonne, from which 56 mega tonne were manmade, of which 40% was polyester, and 32.5 mega tonne natural fibre, of which 80% was cotton (Cardoso, 2013). The use of manmade fibre represents 64% of overall production, primarily by low cost clothing or fast fashion, and propensity to consume in developed countries (Cardoso, 2013). It is predicted that by 2030, the fashion industry will use 115 million hectares, a 35% increase in land for cotton, forest for cellulosic fibers, and grassland for livestock (Snoek, 2017).

The second actor comprises production and manufacturing, that includes processing to fibre raw materials, spinning, weaving, knitting, coloration, finishing (cutting, sewing, quality, pressing), packaging materials, and staging delivery to the consumer. This step uses technical resources of machinery, labor, capital, technology, and data with biological resources like water, energy, and land, yielding a thirty-six percent loss of material waste as a percent of total production as depicted in Figure 3 (Varney-Wong, 2016). Across the industry, only 13% of the total material input is in some way recycled after clothing use (Ellen MacArthur Foundation, 2017).

 

Figure 3: Material Waste as a Percent of Total Production (Varney-Wong, 2016)

The third actor, the consumer, is responsible for use and disposal. Use is defined as washing, drying, ironing, and utilizes biological resources of raw materials, water, and energy. The disposal of clothing has the largest impact on the natural environment via landfill or incineration (Rosa, 2016). While natural fibers like cotton and wool produce methane gas, polyester, the most common non-biodegradable synthetic fiber used in the clothing, can remain in landfill soil for several decades (Rosa, 2016).

Wastes

There are eight types of wastes common to Lean Six Sigma methodologies, a widely adopted best practice in efficient production of goods (Maia, Alves, & Leao, 2013). Across a linear process, T.I.M.W.O.O.D.U. characterizes wastes in transportation, inventory, motion, waiting, over production, over processing, defects and underutilizing knowledge management and people (iSixSigma, n.d.). Additional wastes include untapped human potential, poor design, inappropriate systems, and wasted natural resources (Maia, Alves, & Leao, 2013). All of these wastes are present in the linear process of the textile and clothing system.

The textile and clothing industry relies predominantly on 98 million tonnes per year in non-renewable resources; this includes oil in synthetic fibres production, fertilizers to grow cotton, and chemicals to produce, dye, and finish fibers and textiles (Ellen MacArthur Foundation, 2017). During the growing and extraction of raw materials, 93 billion cubic metres of water annually are consumed, contributing to water scarcity  (Ellen MacArthur Foundation, 2017). During the ‘take’ process step, other wastes include: transportation (energy in picking, extraction to production), inventory (use of land, pesticides, water, energy), motion (inefficient utilization of human labor), waiting (watering takt time, equipment, and human labor), over processing (excessive pesticides, preservatives), defects (waste water pollution, air emissions, poor demand forecast biased by mass-consumption, data quality, poor design), and underutilization (poor bio-design and poor use available technology to aid in harvesting and extraction) (Maia, Alves, & Leao, 2013) (Cardoso, 2013).

Textile and clothing manufacturing demands huge amounts of energy and water, particularly in wet processing. Wastewater must be properly treated from discharge to remove hazardous chemicals, including mutagens, carcinogens, and teratogens, that cause serious environmental damage including exhaust gases, waste water, and the fabrics (Franco, 2017). Also, synthetic fibers, mainly out of petrochemical base, lead to resource use and GHG emissions from processing fossil fuels (Cardoso, 2013). Poor labor standards and conditions pervade global textiles supply chains including ethical issues of child labor, poor safety infrastructure, forced labor, in addition to low wages and extended work days (Franco, 2017).

During the ‘make’ process step, other wastes include: transportation (energy moving products and information, distribution to consumer), inventory (use of land, chemicals, water, energy, fibre, parts, safety stock, working capital, packaging), waiting (between processes, and for human labor execution), over production (water, energy, noise pollution, dust emissions), over processing (water, energy, excessive chemicals, preservatives), defects (waste water pollution, air emissions, poor demand for energy and water, scrap, data quality), and underutilization (poor leadership making unsustainable decisions, unethical treatment of trading partners, poor bio-design, poor use available technology to aid in smart manufacturing) (Kupsala, 2013).

The consumer may send a waste-ridden demand signal that feeds the linear process during use and disposal. Underutilization of information pertaining to sustainable purchasing, sustainable disposal methods, and total costs of ownership in proper care for clothing, can lead to waste in water, energy, and use of chemicals in washing. Less than 1% of material used to produce clothing is recycled into new clothing, denoting a loss of more than $100B worth of materials each year (Ellen MacArthur Foundation, 2017). High costs are associated with disposal and land filling clothing and household textiles; in the UK the annual cost is approximately $108M (Ellen MacArthur Foundation, 2017). Other wastes include: transportation (energy moving products for early disposal and in landfill), inventory (use of land, water, energy, fibre, working capital tied to having too many garments), and defects (waste water pollution, air emissions, synthetic fibre impact in landfill)(Franco, 2017).

 

Conclusions

The large and growing global population has a predisposition to mass-consume with systems in place to inefficiently manufacture clothing, placing an extreme strain on materials, resources, and natural systems (Funkhouser, 2012). Emphasis is needed to highlight the extent that supply chains can contribute to global sustainability improvements and waste reduction in textile and clothing systems. As pressure for natural resources and price volatility intensifies, system focus must shift to recovery of materials and blends, water and energy usage, reducing hazardous chemical use, and ensuring ethical human rights (Franco, 2017). Ultimately, industry must leverage more efficient and sustainable practices through material lifecycle management, including shrinking or decreasing use, slowing, or closing material loops (Ellen MacArthur Foundation, 2015).

 

References

Amed, I., Berg, A., Brantberg, L., & Hedrich, S. (2016, December). The State of Fashion. Retrieved February 19, 2018, from McKinsey & Company: https://www.mckinsey.com/industries/retail/our-insights/the-state-of-fashion

Bove, A., & Swartz, S. (2016, November). Starting at the Source: Sustainability in Supply Chains. Retrieved February 15, 2018, from https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/starting-at-the-source-sustainability-in-supply-chains

Cardoso, A. (2013). Life Cycle Assessment of Two Textile Products: Wool and Cotton. Universidade Do Porto, Environmental Engineering.

Chan, T., & Wong, C. (2012). The Consumption Side of Sustainable Fashion Supply Chain: Understanding Fashion Consumer Eco‐fashion Consumption Decision. Journal of Fashion Marketing and Management, 16(12), 193-212.

De Vries, B. (2013). Sustainability Science. Cambridge: Cambridge University Press.

Ellen MacArthur Foundation. (2015, December 9). Towards a Circular Economy: Business Rationale for an Accelerated Transition. Retrieved February 13, 2018, from https://www.ellenmacarthurfoundation.org/assets/downloads/TCE_Ellen-MacArthur-Foundation_9-Dec-2015.pdf

Ellen MacArthur Foundation. (2017, January 12). Retrieved February 13, 2018, from https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

Franco, M. (2017). Circular Economy at the Micro Level: Dynamic View of Incumbents’ Struggles and Challenges in the Textile Industry. Journal of Cleaner Production, 168, 833-845.

Funkhouser, D. (2012, April). Population, Consumption, and the Future State of the Planet. Retrieved February 15, 2018, from http://blogs.ei.columbia.edu/2012/04/27/population-consumption-and-the-future/

Goodwin, N., Nelson, J., Ackerman, F., & Weisskopf, T. (2008, January). Consumption and the Consumer Society. Retrieved February 19, 2018, from http://www.ase.tufts.edu/gdae/education_materials/modules/Consumption_and_the_Consumer_Society.pdf

Gracey, F., & Moon, D. (2012, October 7). Valuing Our Clothes: The Evidence Base. Retrieved February 19, 2018, from http://www.wrap.org.uk/sites/files/wrap/10.7.12%20VOC-%20FINAL.pdf

Gutierrez, L. (2010, October). Retrieved February 19, 2018, from PelicanWeb Journal of Sustainable Development: http://www.pelicanweb.org/solisustv06n10page1supp3.html

Holling, C. (2001, August). Understanding the Complexity of Economic, Ecological, and Social Systems. EcoSystems, 4(5), 390-405. doi:10.1007/s10021-001-0101-5

iSixSigma. (n.d.). 8 Wastes of Lean. Retrieved February 20, 2018, from https://www.isixsigma.com/dictionary/8-wastes-of-lean/

Kupsala, H. (2013). Eco-Effective Fashion Theory: How to Implement Cradle-to-Cradle Concept Into Fashion and Clothing Design. University of Lapland.

Liu, J., Dietz, T., Carpenter, S., Alberti, M., Folke, C., & Moran, E. (2007, September 14). Complexity of Coupled Human and Natural Systems. doi:10.1126/science.1144004

Maia, L., Alves, A., & Leao, C. (2013). Sustainable Work Environment with Lean Production in Textile and Clothing Industry. International Journal of Industrial Engineering and Management , 4(3), 183-190.

Marino, A., & Pariso, P. (2016, May). From Linear Economy to Circular Economy: Research Agenda. International Journal of Research in Economics and Social Sciences , 6(5), 270-281.

McAlphin, D. (2014, September 10). U.S. Population and Its Impact on the Environment: Why Curbing Per Capita Consumption Is Not Enough. Retrieved February 15, 2018, from Progressives for Immigration Reform: http://progressivesforimmigrationreform.org/publication/u-s-population-and-its-impact-on-the-environment-why-curbing-per-capita-consumption-is-not-enough/

McAuley, I. (2007, February). Behavioural Economics and Public Policy: Some Insights. Retrieved February 9, 2018, from http://www.ianmcauley.com/academic/bepubpol.pdf

Rosa, A. (2016). Circular Economy in the Clothing Industry: Challenges and Strategies. KTH Industrial Engineering and Management.

Rydberg, A. (2016). Circular Economy Business Models in the Clothing Industry. Uppsala University, Department of Earth Sciences.

Sandvik, I. (2017). Applying Circular Economy to the Fashion Industry in Scandinavia Through Textile-to-Textile Recycling. Monash University, School of Social Science.

Shah, A. (2014, January). Consumption and Consumerism. Retrieved October 10, 2017, from http://www.globalissues.org/issue/235/consumption-and-consumerism

Shankar, A., & Pavitt, C. (2002, July). Resource and Public Goods Dilemmas: A New Issue for Communication Research. The Review of Communication, 251-272.

Snoek, S. (2017). Circular Economy in the Textile Industry. Sweden: Environmental Policy Group.

Strahle, J., & Muller, V. (2017, October 30). Key Aspects of Sustainability in Fashion Retail. Retrieved from Springer Link: https://link.springer.com/chapter/10.1007/978-981-10-2440-5_2

Varney-Wong, J. (2016). The Circular Economy. Retrieved February 16, 2018, Retrieved from http://ingienous.com/sectors/economy/a-new-economic-paradigm-of-prosperity-without-growth/circular-economy/

WRAP. (2017, July). Valuing Our Clothes:The Cost of UK Fashion. Retrieved February 19, 2018, from http://www.wrap.org.uk/sites/files/wrap/valuing-our-clothes-the-cost-of-uk-fashion_WRAP.pdf

Yawson, D., Armah, F., & Pappoe, A. (2009, November). Enabling Sustainability: Hierarchical Need-Based Framework for Promoting Sustainable Data Infrastructure in Developing Countries. Sustainability, 946-959.

.

 

Is Circular Progress in Fashion Moving Forward or Far Away?

Introduction

The fashion industry fuels a linear economy with waste greater than $460B of value each year through unsustainable disposal of clothing (Ellen MacArthur Foundation, 2017). Characterized as one of the most polluting and wasteful industries, it consumes 98 million tonnes in non-renewable resources, 93 billion cubic metres of water, and 53 metric tons of fibre to produce clothes used for a short time, after which 13% of the total material input is recycled and 73% of the materials are sent to a grave via landfill or incineration (Ellen MacArthur Foundation, 2017). One estimate suggests that as global population grows to 16% by 2030, the mass-consumption of clothing will grow 65% as 3 billion people move into the middle class (Rosa, 2016).

Reimagining the current take-make-dispose linear process, a circular economy (CE) model demonstrates an opportunity to prevent value leakage by decoupling economic activity from the consumption of finite resources, including shrinking or decreasing use, slowing, and closing material loops as depicted in Figure 1 (Ellen MacArthur Foundation, 2015). This analysis will explore circular approaches that collectively address system-level waste in the textile and clothing system, and the effectiveness of each approach in the acquisition of materials, production of goods, consumption, and disposal.

Read More

Figure 1: Outline of a Circular Economy (Ellen MacArthur Foundation, 2017)

Circular Economy Approaches

According to the Ellen MacArthur Foundation (2017), “A circular economy is restorative and regenerative by design and aims to keep products, components and materials at their highest utility and value at all times, distinguishing between technical and biological cycles.” It represents a paradigm shift in the way products are designed, manufactured, used, and recovered, beyond reducing the negative impacts of the linear economy (Lacy & Rutqvist, 2015). The following CE approaches, particularly when used together, can reduce waste and impact to natural systems throughout the entire textile and clothing system.

Product Design

CE starts with designing products with zero waste, understanding material inputs and dynamics, planning for asset recovery, and considering the total cost of ownership in a product’s lifecycle (Rydberg, 2016). Design also includes development of product lines that meet demand without deteriorating assets. CE design must source material from within regenerative loops, rather than from linear flows and enable businesses to develop a revenue model that generates value across the supply chain as depicted in Figure 2 (PWC, 2017). This may include designing products to last longer, with higher quality specs, and that are easily repairable by the customer.

Figure 2: Value Leakage in Linear v. Circular Economy Model (PWC, 2017)

Recovery and Recycling

CE views recovery and recycling waste as a resource holistically integrated into the business model, not as an external problem (Rydberg, 2016). Upcycling converts an old product or material into something of higher valuable, while downcycling deconstructs the properties of a material for reuse (Lacy & Rutqvist, 2015). Conceptually, reuse enables the mining of resources from current products, repurposing material inputs previously funded (PWC, 2017). One variation includes recovering end-of-life products that recapture value in an actor’s own closed loops or any actor’s open loops as depicted in Figure 2 (PWC, 2017). A second variation recovers waste and by-products from a company`s own production process and operations to recapture value (Marino & Pariso, 2016). Therefore, the CE model can generate a revenue stream from large amounts of inefficiency in waste and disposal that are valuable to the broader supply chain or another actor (Marino & Pariso, 2016).

Raw Materials and Innovation

Disassembling a garment for reuse and recycling can be labor intensive and ineffective (Rosa, 2016). Current linear business models rely on large quantities of natural resources. Little or no control over price and supply of commodities forces companies to accept the risk of fluctuations affecting raw material acquisition and production, and mitigate risk or remove it from the supply chain (PWC, 2017). Integrating CE in sourcing and procurement risk management strategy provides, “a more predictable, long-term, cost-effective source for the energy or materials” (Lacy & Rutqvist, 2015, p. 36). Additionally, advances in raw material innovation fuel eco-design and feed CE loops across the supply chain. Examples of innovation include: a dissolving thread called Smart Stitch that aids in recycling, Crop-A-Porter that makes fabric out of crop waste, a compostable clothing called Algae Apparel, and a design that uses mycelium to grow clothing (Sandvik, 2017).

Product Life Extension

Product Life Extension (PLE) lengthens a product’s useful lifecycle by generating revenue through longevity instead of volume; an example is selling a product second hand, or repurposing it until worn out. Manufacturers leverage human behavior and consumerism in the form of trade-in or buy back models. Additionally, companies help customers extend PLE with repairs, maintenance services, care guidelines, and DIY repair alternatives.

Policy and Regulations

Governments and regulators, particularly in Europe, are rallying to enable the CE. Broad changes include eco-design directives, green public procurement, extended producer responsibility, and taxation mechanisms. Promoting longer product lifetimes, defining sustainable performance criteria, a standard of labeling, metrics to define circularity, and avoiding hazardous substances progress the CE model through legislation and compliance.

Sustainable thought leader Walter Stahel suggests leveraging policy and taxation, “That legal considerations, especially taxing systems have to be reconsidered. If we had ‘sustainable taxation’, a tax on non-renewable resources and no tax on renewable resources, where human labor is a renewable resource, it would give activities of the circular economy an immediate incentive” (Sustainable Taxation, n.d.). As depicted in Figure 1, the smallest loops create the highest social benefits because they are labor intensive (Ellen MacArthur Foundation, 2017). Another key component of sustainable taxation is value added tax (VAT). Since all the activities of a circular economy inherently maintain value, actors who adapt CE approaches should not have to pay VAT. “This concept has been accepted in principle by the UK treasury and several other European countries, such as in Scandinavia, where there is 25% VAT. By not levying VAT on repairs, re-marketing or re-manufacturing of goods, you would create a clear signal to business that it’s beneficial to get involved in the sustainable activities of the circular economy” (Stahel, 2013, p. 2).

Certifications play a major role in CE because they validate the quality and sustainability in the complex, multi-tier process of a fabric (Sandvik, 2017). Although a single commodity is certified, there are factors that influence the total life cycle assessment of feedstock. Several organizations including the Global Organic Textile Standard, Oeko-Tex, Made in Green, and the Better Cotton Initiative define high-level requirements in environmental criteria, technical quality, and minimal social criteria in the supply chain of organic textiles’ to be certified. Standardizing disclosures and labels for eco-compliant products facilitate trust between actors upstream in raw material acquisition through production, and downstream to distributors, retailers, and consumers (Rosa, 2016). Alignment of power and incentives between actors is critical to improve cross-cycle and cross-sector performance.

Sharing Platform and Product as a Service

The sharing platform business model simplifies ownership through channels of renting, sharing, swapping, lending, gifting, or bartering of resources and allows businesses to expand into new markets (Lacy & Rutqvist, 2015). Consumers choose sharing platforms for convenience, diversity, lower price, and better product or service quality (Lacy & Rutqvist, 2015). The product-as-a-service (PaaS) model offers an alternative for products with high costs and high operating costs where consumers are users not owners. PaaS user adoption influences include infrequent use, lack of capacity, and unaffordability. Product design and quality are critical to performance because “quality degradation, short lifespan, low utilization rate and low recycling or return can directly impact a company`s bottom line” (Lacy & Rutqvist, 2015, p. 103).

 Changes in Human Behavior

Customer behavior is evolving and demand is increasing for sustainable and responsible products. Manufacturing quality products coupled with access to new CE business models transforms the perception of clothing as a disposable item to being a durable product as described in Figure 3, ‘Customer Personas and Access Model Types in a New Textiles Economy’ (Ellen MacArthur Foundation, 2017). Shifting the consumption of fast fashion to purchasing green garments, while increasing garment lifecycle and the number of wears, could be the most powerful way to capture value, reduce pressure on resources, and decrease negative impacts. For example, if the number of times a garment is worn is doubled, on average GHG emissions would be 44% lower (Ellen MacArthur Foundation, 2017).

Figure 3: Customer Personas and Access Model Types in a New Textiles Economy (Ellen MacArthur Foundation, 2017)

Collaborative Supply Chains

Adopting a circular model is gaining momentum as actors across the supply chain agree to share the cost and benefits of innovation and product design (Lacy & Rutqvist, 2015). To optimize material flows, supply chain actors must improve how they trace material flows, which includes in-depth information sharing, often times with competitive overlap that includes design, pricing, costs, volumes, lead times, and supplier terms. The Higg Index is a “self-assessment tool that empowers brands, retailers and facilities of all sizes, at every stage in their sustainability journey, to measure their environmental and social and labor impacts and identify areas for improvement” (Sustainable Apparel Coalition, 2018). “Using the Higg Index is the most adapted and reliable way to measure textile value chains, manage their impact and to finally create a common language on sustainability practice” (Sustainable Apparel Coalition, 2018).

Circular Approaches: Moving Forward or Far Away?

The Ellen MacArthur foundation estimates that “CE could deliver $1.8 trillion for Europe by 2030” (2017) with “savings in materials alone could exceed $1 trillion a year by 2025”. Although the CE approaches outlined herein are beneficial, when applied separately in a global trading environment, they are insufficient to move forward because they address only certain parts of the transition, products, process, policy, or actor in the supply chain. Largely, the textile and clothing system is directed by compliance rather than innovation, with exceptions like Levi’s, Nike, and Patagonia to name a few. Many companies try to be “less bad” by optimizing the wrong system, using less input, less energy, and less hazardous materials, striving for eco-efficiency (Braungart & McDonough, 2002).

Consumerism and mass-production create bad demand and economic signal inputs that do not encourage efficient resource use, pollution mitigation, or space for CE innovation. In developing countries, mass production of cheap, fast fashion creates Gross Domestic Product and influences the quality of life for citizens. Globalization and cost competitiveness force production economies of scale, while unethical labor conditions and unsustainable business practices are necessary to compete. Developing countries lack strict standards, environmental laws, and institutions to reinforce sustainable measures. So, the traditional linear economy still has many economic advantages for actors because businesses can still externalize the cost of risk, non-compliance, and waste (Lacy & Rutqvist, 2015).

There are two key challenges: maintaining the quality of resources and keeping ownership rights to high-quality resources (Franco, 2017). Secondly, controlling the return flow and maximizing the quality of recovered resources through improving waste separation, inspection, processing and refining. For example in downcycling, fibres are recovered into materials of lower quality. At some point, fibres cannot be further cascaded and retire to a landfill (Franco, 2017). Downcycling is therefore only a mitigating factor. Product design, raw material innovation, and cooperation across the supply chain is critical for progress.

Other challenges that delay the scale and adoption of CE include insufficient skills and investment in circular product design and production that could facilitate greater re-use, remanufacture, repair and recycling (Anderson, 2016). There is an insufficient investment in the CE recycling and recovery infrastructure, which further propagates a lock-in linear mindset. Scale economies for PaaS, sharing platforms, production and recovery technologies are still comparatively immature to alternatives (Lacy & Rutqvist, 2015).

Current policies do not promote widespread end-to-end adoption of CE, slowing and closing resource flows. There are weaknesses in policy compliance in bioenergy and waste management. Potential policy actions include economic incentives, targeted and increased funding, efforts to engage and link actors across the supply chain. Collaborative supply chains have limited information, and lack no-brainer economic incentives to encourage repair and reuse (Gam, Cao, Farr, & Heine, 2008). Other policy improvements include taxes on aggregates of unsustainable materials and products, CO2 and waste disposal taxes, and landfill taxes.

Conclusion

To disrupt the current linear process for clothing, new models to access and maintain clothes are essential. Economic opportunities already exist for these approaches, and are achievable through refocused marketing, scaling sharing models, making higher quality and durability more attractive, and increasing clothing utilization further through brand commitments and policy (Sandvik, 2017).

References

Anderson, R. (2016). The Firms Planning on Making Less and Recycling More. Retrieved March 18, 2018, from http://www.bbc.com/news/business-35755492

Braungart, M., & McDonough, W. (2002). Cradle to Cradle. New York: New Point Press.

Cardoso, A. (2013). Life Cycle Assessment of Two Textile Products: Wool and Cotton. Universidade Do Porto, Environmental Engineering. U.Porto.

De Vries, B. (2013). Sustainability Science. Cambridge: Cambridge University Press.

Ellen MacArthur Foundation. (2015, December 9). Towards a Circular Economy: Business Rationale for an Accelerated Transition. Retrieved March 19, 2018, from https://www.ellenmacarthurfoundation.org/assets/downloads/TCE_Ellen-MacArthur-Foundation_9-Dec-2015.pdf

Ellen MacArthur Foundation. (2017, January 12). A New Textiles Economy: Redesigning Fashion’s Future. Retrieved March 20, 2018, from https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

Franco, M. (2017). Circular Economy at the Micro Level: Dynamic View of Incumbents’ Struggles and Challenges in the Textile Industry. Journal of Cleaner Production, 168, 833-845.

Gam, H., Cao, H., Farr, C., & Heine, L. (2008). C2CAD: A Sustainable Apparel Design and Production Model. International Journal of Clothing Science and Technology, 21(4), 166-179.

Harrington, L. (2013, September). Fashion Unleashed: The Agile Fashion Supply Chain. DHL Supply Chain.

Lacy, P., & Rutqvist, J. (2015). Waste to Wealth: The Circular Economy Advantage . New York: Palgrave Macmillan. Retrieved 2018, from https://www.forbes.com/sites/tomiogeron/2013/01/23/airbnb-and-the-unstoppable-rise-of-the-share-economy/#729b2ccfaae3

Maia, L., Alves, A., & Leao, C. (2013). Sustainable Work Environment with Lean Production in Textile and Clothing Industry. International Journal of Industrial Engineering and Management , 4(3), 183-190.

Marino, A., & Pariso, P. (2016, May). From Linear Economy to Circular Economy: Research Agenda. International Journal of Research in Economics and Social Sciences , 6(5), 270-281.

PWC. (2017). Spinning Around: Taking Control in a Circular Economy. Retrieved March 22, 2018, from https://www.pwc.com/gx/en/sustainability/assets/taking-control-in-a-circular-economy.pdf

Rosa, A. (2016). Circular Economy in the Clothing Industry: Challenges and Strategies. KTH Industrial Engineering and Management.

Rydberg, A. (2016). Circular Economy Business Models in the Clothing Industry. Uppsala University, Department of Earth Sciences.

Sandvik, I. (2017). Applying Circular Economy to the Fashion Industry in Scandinavia Through Textile-to-Textile Recycling. Monash University, School of Social Science.

Stahel, W. (2013, July). The Circular Economy. Retrieved from http://www.makingitmagazine.net/?p=6793

Stahel, W. (n.d.). Sustainable Taxation. Retrieved March 27, 2018, from http://www.progressiveeconomy.eu/content/sustainable-taxation

Sustainable Apparel Coalition. (2018, March 27). Retrieved from The Higg Index: https://apparelcoalition.org/the-higg-index/

Sustainable Brands. (2015, September 25). NIKE Commits to 100% Renewables, Partners With MIT Climate CoLab on Materials Innovation. Retrieved from http://www.sustainablebrands.com/news_and_views/products_design/sustainable_brands/nike_commits_100_renewables_partners_mit_climate_

.